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Abstract Automatic music composition and sound syn-
thesis is a field of study that gains continuously in-

creasing attention. The introduction of Evolutionary

Computation has further boosted the research towards

exploring ways to incorporate human supervision and

guidance in the automatic evolution of melodies and
sounds. This kind of human–machine interaction be-

longs to a larger methodological context called Interac-

tive Evolution (IE). For the automatic creation of art

and especially for music synthesis, user fatigue requires
that the evolutionary process produces interesting con-

tent that evolves fast. This paper addresses this issue

by presenting an IE system that evolves melodies us-

ing Genetic Programming (GP). A modification of the

GP operators is proposed that allows the user to have
control on the randomness of the evolutionary process.

The results obtained by subjective tests indicate that

the utilization of the proposed genetic operators drives

the evolution to more user–preferable sounds.

Keywords interactive evolution · music composition ·
sound synthesis · genetic programming · fitness–
adaptive genetic operators

1 Introduction

The creation of artistic material with automatic means

is a vast area of research that aims at finding connec-

tions between human abstract thought and universal

mechanisms. Examples of such mechanisms are pure
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mathematics, physics and biology among others. With
the emergence of digital computers, the interdisciplinary

study of topics flourished, allowing the connection of

different scientific fields. A connection example is ana-

lyzed in this paper between genetic evolution, mathe-

matics and music, under the scope of their interaction
with human. This connection results into user-driven

evolution, commonly termed as Interactive Evolution

(IE). Systems that utilize IE constitute a fertile field for

the automatic creation of music and generally art, with
the constant supervision of a human user. However, user

fatigue in IE systems is a common impediment for the

evolution, especially for artistic purposes.

The use of Genetic Programming (GP) [10] for au-

tomatic music composition and sound synthesis with
an IE scheme has been previously used in various sys-

tems. In [19,22] two systems are presented where Ge-

netic Algorithms (GA) and GP are combined to modify

parts of symbolic music compositions and create novel
ones. Some works have utilized automatic fitness raters

based on Artificial Neural Networks (ANNs) [12,20] or

Self Organizing Maps [13] that were trained on speci-

fied symbolic music features. For a review of systems

that compose symbolic music with genetic–based tech-
niques, the interested reader is referred to [2].

In parallel, evolutionary techniques have been used

for sound synthesis but they have mainly focused on

creating synthesized sounds that assimilate certain tar-

get sounds [4]. GP has been used to evolve combinations
of sinusoidal oscillators and filters to simulate a target

sound too [5]. In the project described in [15], an IE

system is utilized for synthesizing sounds through func-

tions that directly shape waveforms, which are evolved
according to fitness values provided by users. However,

for these functions it was reported that they “produced

little more than irritating noise and evolved (if at all)
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very slowly”. Finally, an IE system that is used for mea-

suring possible aesthetic measures for sound has been

formulated in [9]. User fatigue is commonly reported

not only in IE systems that create sounds or music, but

also graphical art [11]. User fatigue in IE systems is an
important factor since it does not only affect the user’s

engagement to the rating task, but may consequently

mislead the evolutionary process [25].

This work proposes a modification of the genetic op-

erators used in GP for reducing the effect of user fatigue

in the presented IE system by providing the user with a
sense of control over the evolutionary process and thus

leading the evolution to subjectively more pleasing out-

put. This is accomplished by employing constraints on

the depth that the GP operators act. In the formulation
of the problem at hand, the depth of action of the GP

operators is indicated to have an impact on the results

of the evolutionary process, specifically in the differ-

ences between parents and offspring. The presented IE

system uses GP to evolve functions which create wave-
forms with pleasant and interesting sonic and melodic

output. These functions, together with some prerequi-

sites for GP are presented in Section 2. Section 3 ex-

amines the variability of the melodies produced when
applying certain constraints on the genetic operators

that evolve them. Motivated by the aforementioned ex-

amination, the proposed methodology for applying user

control on the evolution is also presented in this Section.

In Section 5, the results obtained through subjective
tests are presented, indicating that better melodies are

expected to emerge, when the proposed methodology

is applied. Some conclusions are discussed in Section 6

together with pointers for future work.

2 Background material

This Section presents a short introduction to Genetic
Programming (GP) and a description of the mathemat-

ical objects that create the melodies for the presented

Interactive Evolution (IE) system. For the GP we de-

scribe the genetic operators and the utilized selection
methods and also we provide the terminology that is fol-

lowed throughout the paper. Based on this methodolog-

ical framework, the next Sections discuss the relation of

depth constraints on GP operators to the melodic dif-

ferentiation of offspring.

2.1 Genetic Programming

Genetic Programming (GP) is a methodology intro-

duced in [10], and has been widely used in a wide range

of applications [14]. With GP the evolution of programs

or functions is possible, through the stochastic com-

bination or alteration of their parts. This is possible

with the representation of programs as tree structures.

Through this procedure new programs are created that

provide better solutions to a certain problem. Next,
with the utilization of a selection procedure based on

the quality of results provided by each program/tree–

clone, new combined or altered programs are chosen.

This procedure stops when a program that provides a
satisfactory solution is created, or if a maximum num-

ber of program–creation epochs has been reached.

The GP methodology, being a part of the general

methodology of Genetic Algorithms, is inspired by the

natural selection introduced in the Darwinian theory
of evolution. This fact has established a nomenclature

similar to the biological theory counterpart. Thus, each

program is referred to as an individual, the group of

individuals that are candidate for selection is called the
population (or the gene pool) and the individuals cre-

ated at each stage of the evolution form a generation.

The individuals that are combined or altered are named

as parents and the resulting individuals offspring or

children. The aptness of a program is measured by a
numeric value that is called fitness value. The struc-

tural representation of a program is referred to as the

genotype and its output as the phenotype.

Program combination or alteration of programs is
realized through a set of genetic operators. In this work

we use the standard crossover and subtree mutation (or

headless chicken crossover [1]). The crossover combines

two individuals by swapping a random subtree of each

and thus producing two new individuals. The subtree
mutation, swaps an entire random tree with a random

subtree of an individual. A graphical example of the

effects of these two operators is provided in Figure 1.

The selection methods used in this work are roulette,
tournament and elitist. The roulette method acts as if

a roulette with random pointers is spun, and each in-

dividual owns an angular portion of the roulette that

is proportional to its fitness value. Tournament chooses

each parent by randomly drawing a number of individ-
uals from the population and selecting only the best

of them. Finally, the elitist method selects as parents

only the fittest individuals of the population. A thor-

ough description of GP algorithm along with its main
operations and characteristics can be found in [10,14].

2.2 Simple functions that produce structured sonic
output

The IE system described in the paper at hand uses a

class of functions which create waveforms with interest-

ing structural coherence from the level of sound texture
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Fig. 1 Graphical examples of the crossover and mutation
operators.

to the level of musical compositions. Thus, hereby we

will be using the terms waveform and melody inter-

changeably with similar meanings. These functions are
rapidly attracting the attention of many programmers–

composers [7] in the 8–bit music community [6] and

they have mainly been used to produce music content

with sampling frequency and quantization resolution
equivalent to the early PCM digital coding. Greater

sampling frequency and/or quantization resolution could

be used but the utilized setup provides an aesthetic ref-

erence point that makes noisy sonic content acceptable,

e.g. short segments of noise are perceived as percus-
sion sounds. These functions use not only the standard

arithmetic operators (“+”, “-”, “*”, “/”), but we have

also experimented with a subset of the available C bit-

wise operators, namely the bitwise AND (&), OR (|), XOR
(^), left shift (<<) and right shift (>>). Furthermore,

we have examined the use of a single variable, as de-

scribed in the next paragraph. For a thorough analysis

Algorithm 1 Construction of an 8–bit waveform of

8000Hz sample rate through a function f(t)

Input: i) A functional expression f(t) and ii) time duration
in seconds (d)
Output: The waveform of an audio signal, s(t), with d sec-
onds duration

1: for t = 1 to d · 8000 do
2: if f(t) == Not a Number (NaN) then
3: q(t)← 0
4: else
5: q(t)← mod([f(t)], 256)
6: end if
7: s(t)← 2q(t)

255
− 1

8: end for

on the sound properties of the audio signals created by

these functions, the interested reader is referred to [7].

Examples of the tree representations for different such
functional expressions are given in Figure 1.

Algorithm 1 provides a thorough description for the

construction of sound waveforms through the exam-

ined functions, while a graphical example is given in

Figure 2. These waveforms have an 8–bit resolution
and a sample rate of 8000Hz and are constructed with

the use of an integer counter, t, that takes values be-

tween 1 and d · 8000, where d is the desired duration

of the sound output in seconds. The counter, t, rep-

resents the generated music sample indices. Then the
functional expression f(t) is evaluated for every counter

value t ∈ {1, 2, . . . , d·8000}. The function f is computed

in a integer C–like context, which means that f(t) pro-

vides integer values for integer input and hereby we
consider f(t) = [f(t)] = �f(t) + 0.5� ∈ Z. Possible divi-

sion by zero during the computation of f(t) is assumed

to provide a zero value, as indicated in the second line

of Algorithm 1. For simulating the wrapping overflow-

ing behavior of 8–bit computer systems, we form the
“quantized” sequence q(t) = mod(f(t), 256) for t ∈
{1, 2, . . . , d · 8000}. Finally, we normalize q(t) in the

range [−1, 1] by s(t) = 2 · (q(t)/255) − 1 and thus ob-

tain the waveform s(t). The construction of the wave-
form through Algorithm 1 is unstable, in a sense that

minor modifications of the f function may lead to vast

differences in the waveform. However, in Section 3 indi-

cations are presented that the “depth” of the changes

in function f is related to the differentiation of the re-
sulting waveforms.

In the next Section (Section 3), we compute the per-

ceived sound distance of the sonic output of these func-

tions, which is also the phenotypical distance of the in-

dividuals that represent the respective function. There-
fore we need a measure to compute the distance be-

tween the derived sounds. To this end, we extract some

features from the waveforms created by individuals and
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Fig. 2 Example of the transformation of the sequence
f(t) = t*(t>>8*(t>>15|t>>8)&(20|(t>>19)*5>>t|t>>3)),
t∈ {1, 2, . . . , 100} to q(t) and finally to the waveform s(t).

use them as indicators of similarity. Two categories of

features were collected. The first, named as waveform

information features, concerns the information capacity

of the quantized sequences that form the waveform. The

second category is named as spectral and cepstral fea-
tures and describes some frequency domain character-

istics. The cepstral coefficients, expressed through the

Mel–Frequency Cepstral Coefficients (MFCCs) have pro-

ven to be an effective measure for measuring percep-
tual distance of audio signals [21]. All the features are

demonstrated in Table 1. They are all single numbers,

except from the MFCCs which are represented by 12–

dimensional vectors. Hence, the vector of waveform fea-

tures for each waveform–melody is represented as a 19–
dimensional vector.

3 Controlling evolution with Fitness–Adaptive

genetic operators

The paper at hand aims to create an IE system which

reduces user fatigue by making the process of evolu-
tion controllable by the user. Indications are provided

that the control of offspring variability during evolution

may be realized by the utilization of depth constraints

in the application of the GP genetic operators. There-

fore we examine the phenotypical behavior of children
that have been evolved with genetic operators which

act in a certain depth of the tree (genotypical) repre-

sentation of the parents. Specifically, we present two ex-

periments which indicate that higher levels of operator
action produce individuals that are less similar to their

parents. The phenotypical distance among individuals

is computed with the use of the sound features pre-

Table 1 The features used as indicators of audio similarity.

Waveform information
Fractal Dimension
(FD)

Fractal dimension of the quantized
sequence with the Higuchi [8] algo-
rithm

Shannon Infor-
mation Etropy
(SIE)

Shannon Information Entropy [17]
of the normalized (to unit sum)
histogram of the quantized se-
quence

Compressibility
through compres-
sion rate (CR)

Ratio of the size of the com-
pressed quantized sequence with
the Lempel–Ziv algorithm [26]
over the size of the uncompressed
sequence

Spectral and Cepstral features [23]
Spectral Centroid
(SC)

The “center of weight” of the spec-
trogram

Spectral Centroid
Standard Deviation
(SCstd)

Standard deviation of the the spec-
tral centroids within short time
segments (of 0.1299 seconds)

Mean Spectral Flux
(SFm)

The mean value of spectral fluxes
(Euclidean distances of the spec-
trogram of short consecutive seg-
ments) of segments of 0.1299 sec-
onds

Spectral Flux Stan-
dard Deviation
(SFstd)

The standard deviation of the
aforementioned spectral fluxes

Mel–Frequency
Cepstral Coeffi-
cients histogram
(MFCCh)

The histogram of 12 Mel–
Frequency Cepstral Coefficients
(MFCCs) [3], produced by com-
puting 13 and removing the DC
component

sented in Section 2.2. Motivated by these experiments,
we present a methodology that allows the user to have

control on the randomness of the evolution derived by

the presented system. It has to be noted that we do

not attempt to generalize the results of the findings
presented here to a wider GP methodological context.

Nevertheless, we argue that the proposed methodology

is applicable on the presented system. This argument

is further amplified by the findings in the experimental

results Section (Section 5).

3.1 Depth of operator action and phenotype variation

To examine the dependency of the depth in which a

genetic operator acted and the phenotypical variation

of the resulting offspring, we have followed the method-
ology described below. We have created a random ini-

tial generation of NP individuals, here NP = 10, under

the constraint that their representation had a depth

level greater than 5. To study the phenotypical varia-
tion for the crossover and mutation operations in cor-

respondence to the depth level that they act, we have

conducted two specific experiments. In the first exper-
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iment, we evolved the initial generation for ten gen-

erations by only applying the crossover operator and

always selecting the offspring as parents for the next

generation. During the second experiment, we followed

an analogous evolution scheme by applying only the
mutation operation. For each experiment, 4 scenarios

were applied independently, with the operators acting

on different depths. If we suppose that an individual

had a depth D, then according to the 4 scenarios the
operators acted on the D− 0, D − 1, D − 2 and D− 3

depths respectively.

At each evolution generation and for every depth

scenario we measured the mean phenotypical distance

between the generations’s offspring and their respective
initial parents. As a measure of similarity we utilize the

Euclidean norm of the vector of relative differences1 be-

tween the feature vectors of the initial parents and their

respective offspring. The mean values and the standard
deviations (St.D.) of the distances that describe these

differences are illustrated in Figure 3. It is clear that

when an operator acts in the leaf nodes, the sonic out-

put is less likely to change, since the relative differences

are smaller. Hence, for the presented methodological
context we observe that as the depth in which the op-

erator acts decreases, the differences are getting larger.

3.2 Fitness–Adaptive genetic operators

Our primary concern is making the presented system

as user–friendly as possible, letting the user have some

control over the randomness of evolution and thus re-
ducing user fatigue, which is a common problem in IE

systems that create sound. One of the main reasons

for user fatigue in former versions of our system is the

creation of individuals that produce uninteresting melo-

dies or noisy sounds. A first idea towards reducing these
phenomena was the employment of constraints in the

depth of the offspring and the depth that the operators

acted. To this end, the selected genetic operator was

being re–applied while the offspring had a minimum of
depth levels below 3 and above 10. Furthermore, the

nodes that were available to be selected for the appli-

cation of the operator, were the ones located at a depth

level above 2.

1 The vector of relative differences, r between two vectors,
x1 and x2 is computed as r = (x2 − x1)./x1, were ./ is
the Hadamard or componentwise division. Every dimension
of r describes the relative difference between the components
of each dimension of x1 and x2. In the examined case the
use of relative differences demises scaling issues that emerge
by the inhomogeneous vector of features. For example, for the
examined individuals the fractal dimension is between 1.1 and
1.9, while the spectral centroid is between 800 and 1200.
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Fig. 3 Mean and standard deviation of distances between
the phenotypes of 10 individuals and their descendants from
1 to 10 generations. The descendants were created with (a)-
(c) crossover and (b)-(d) mutation acting on a specified depth
on each descendant.

The evolution of melodies was progressing slowly,

given the deteriorated number of generations that a

user is able to evolve during a trial. Therefore, the vast
alteration of high rated individuals would prolong the

evolution, making the rating procedure more fatiguing

for the user. Additionally, we considered the fact that

the depth of the node that is chosen for the genetic op-
eration has an impact on the amount of variation of the

melodies, i.e. the deeper the node the less the variation.

Since a higher rated individual should be less altered,

the depth on which the genetic operator acts should be

larger. Considering a minimum depth for the genetic
operation denoted as m, the depth of the tree represen-

tation of the i-th individual, Di, its fitness value fi, a

minimum fitness value equal to 0 and a maximum fit-

ness value F , the depth of the operation, di, is chosen
to be the integer rounding value of

βi = m+
fi · (Di −m)

F
, (1)

thus di = �βi + 0.5�. Equation 1 admits a linear adap-

tion of depth according to fitness which we have chosen

as an initial approximation. Further research on the na-
ture of adaption might provide better results.

3.3 Controlling evolution

The rounded value of Equation (1) defines a certain

depth for the operation to act on each individual. A po-

tential drawback of this approach is that the evolution
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Fig. 4 In this Figure we assume an individual rated with 6, its tree representation has 9 depth levels and the minimum depth
that a genetic operator can act is 3. The probabilities that a genetic operator will act on a certain depth according to a RF are
depicted, specifically (a) RF = 0.2, (b) RF = 0.4, (c) RF = 0.7 and (d) RF = 1.0. The discrete depth probability is computed
by the modified pdf.

becomes more deterministic, depriving the user of the

effect of surprise. To this end, we have employed a non–
deterministic parameter that introduces uncertainty to

the depth that is chosen for the genetic operation. This

parameter is adjusted by the user before the genetic

operations apply to the selected individuals. We have

named this parameter Risk Factor (RF), to point out
that there is also a hazardous potential in the effect of

surprise that high RF values impose.

The depth on which the operator acts depends on

two factors: the depth according to fitness, as estimated
in Equation (1), and the value of the RF. Specifically,

the RF value modifies the width of a Gaussian bell

that constitutes a continuous Normal probability den-

sity function (pdf) estimated by

p(x;βi, σ(RF)
2) =

1
√
2πσ(RF)2

e
− (x−βi)

2

2σ(RF)2 , (2)

where βi is the depth according to fitness, given by
Equation (1), that acts as the mean of the distribution

and σ(RF) is a function of RF that acts as it’s variance.

The pdf, p(x;βi, σ(RF)
2), is continuous, and provides

probabilities for non–integer depths, x. We thus form
the discrete equivalent of p(x;βi, σ(RF)

2) by computing

the probabilities at each discrete depth level allowed by

a minimum and a maximum depth of operation action,

m and Di respectively. The discrete probabilities are fi-

nally adjusted to have unit sum, forming the final mod-
ified pdf. A graphical example of the probability trans-

formations is given in Figure 4, with σ(RF) = 3 ·RF.

4 Overview of the proposed Interactive

Evolution system

The proposed IE system incorporates GP to evolve the
functional expressions discussed in Section 2. The user

hears the sound output (phenotype) that an individual

produces for as long as she/he wishes and then assigns

Fig. 5 Screen shot of the visualizations during the playback
process.

a fitness value for this individual according to hers/his

taste. Some individuals exhibit interesting melodic con-

tent, with several melodic and rhythmic variations, while

others produce rather uninteresting music forms. Since
the user may not be sure about the potential of each

melody to change from uninteresting to interesting, she/

he should spend a considerable amount of time hear-

ing them, a fact that increases fatigue. For this rea-
son, the user is advised to consult several visualizations

that are provided in parallel with the sound playback so

that the expected variation potential of the individual

she/he hears is somehow anticipated. These visualiza-

tions include the spectrogram, the MFCCs visual repre-
sentation and the plot of the quantized sequence (q(t))

among others. Figure 5 illustrates a screen shot of the

visualizations that are produced during the playback of

an individual.

A standard GP methodology is followed for the pre-

sented IE system, with the individuals of the current

population going through a selection stage, where the

parents of the next generation are specified. Two vari-
ations of the main IE system were created and tested,

one with random selection of the depth of nodes and

another that utilized the RF. For each variation, three
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versions were created with different selection schemes

that are previously described (in Section 2), namely

roulette, tournament and “elitist” methods. The moti-

vation behind the “elitist” selection was to examine the

possibility of further reducing the user fatigue by elim-
inating emerging offspring that produced rather noisy

or uninteresting phenotype, with a subsequent tradeoff

in population variability. The random depth selection

is similar to the one presented in [9].

In the RF variation, the users are asked to provide

a RF value before the application of the genetic opera-

tors. The available RF values are 0, 0.1, . . . , 1, and the

variation function was chosen to be σ(RF) = 3 · RF.
A value of RF near 1 allows an almost uniformly dis-

tributed selection of depth, as illustrated in Figure 4 (d).

The genetic operator was selected randomly with cross-

over and mutation probability equal to 0.9 and 0.1 re-
spectively. The minimum depth that the genetic oper-

ation is allowed to act is set to m = 3. After experi-

menting with the genetic operators, we observed that

individuals of extremely small and large depth tended

to produce uninteresting and noisy sounds respectively.
For this reason, we employed depth constraints to the

offspring by re–performing the selected operation with

the selected individuals until the depth of their offspring

was between 3 and 10.

We have firstly designed the system to create a ran-

dom initial generation, but the individuals’ phenotypes

created in a random manner were most commonly un-

interesting or noisy. A rating procedure with this kind
of initialization would just discard noisy individuals,

failing to produce interesting finding. The initial gen-

eration was thus chosen be a random selection of indi-

viduals which have been previously certified to produce
interesting sonic output. In this way, the evolutionary

process was led towards the subjectively chosen direc-

tion of the user.

Focusing on the presented IE system, each user was
able to select the number of individuals in each genera-

tion. For the presented results however, the users were

only allowed to choose 4 individuals for the initial gen-

eration (and consequently for each generation), which

constitutes a good compromise between population di-
versity and IE potential. Additionally, for the RF vari-

ation, each trial began with 0.5 RF value. The imple-

mentation of the IE system was developed in MATLAB

using a modified version of “GPLAB” [18]. A typical
Graphical User Interface (GUI) was also implemented

for the communication between the user and the system

in order to facilitate the user.

5 Experimental Results

The derived results comprise of statistics gathered among
11 participants–users, most of whom (7 out of 11) were

able to play a musical instrument and 4 of them had at

least 5 years of music education. The participants were

not aware of the purposes of the research, and were not

informed about the way that the system was realized
before they started their trial. The only information

they were provided with had to do with their interac-

tion with the system through the GUI. The participants

that used both the random depth and the RF variations
were 7, 2 participated exclusively in the random depth

variation2 and 2 exclusively in the RF variation. Thus

9 users participated in each variation. The participants

that took part in both variations first ran a trial of

the random depth and one week latter, a trial with the
RF variation. Before the beginning of each trial, each

user heard three sample melodies to become familiar-

ized with the music style and the sound textures of the

8–bit melodies.

The participants were advised to rate each melody
according to their taste and were encouraged to feel

free to quit the program any time they liked. For the

participants that used the RF variation, they were pre-

viously informed that higher RF values were expected

to introduce greater novelty to the new melodies, under
the risk that these melodies could be uninteresting or

noisy. The hearing process was controlled by the user,

who was prompted to stop the melody any time she/he

wished. Before the beginning of each trial, the users
were also advised to consult the visualizations for de-

termining the alteration potential of the melody they

heard. After hearing each melody, a rating dialog was

appearing prompting the user to rate the melody just

heard. The rating scale was the integer values between
0 and 10, with 0 being the worst, while the participants

were advised to freely rate the individuals according to

their personal taste. Between each generation, the users

were asked to choose an RF value, according to their
expectancy for melodic diversity.

5.1 Fitness improvement in both variations

We divided the participants in three groups for each
variation so that all possible system conditions were

considered. We gathered the fitness values assigned by

the participants in the initial generation and the final

2 The participants that used the random depth variation
were initially 3, but the results obtained by one of them were
discarded because he quit the program after the first genera-
tion.
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generation and compared them to assess the improve-

ment made in both variations, for all the system condi-

tions. By studying the rating values provided by differ-

ent users, we observed great differences in the way that

users used the 0–10 rating scale. For example, the best
rating given by a user was 5, while other users con-

sidered 7 as a moderate rating. In order to make the

rating statistics independent from the rating profile of

each participant and since we are interested in measur-
ing the improvement of rating and not the rating per

se, we have normalized the ratings for all generations

of each user to have unit maximum value. This was re-

alized with the division of all the ratings of a user with

hers/his maximum rating among all individuals. Sam-
ple melodies at different evolution stages that appeared

during the simulation of a participant are available on-

line [16] or upon request.

Table 2 and Table 3 demonstrate the overall im-
provement of the normalized user ratings from the ini-

tial to the final generation for the random depth and

the RF variations respectively. We refer to the normal-

ized fitness ratings corresponding to the initial and the

final generation with the FI and FL indices respectively,
while the GN index refers to the number generations.

The mean value of the aforementioned quantities is de-

noted by µ, their standard deviation by σ, while max

and min denote their maximum and minimum values
respectively. The relative mean fitness change between

the initial to the final generation is denoted by rf , where

rf = (µFL − µFI)/µFI.

The positive rf values for each variation and each

version demonstrate that the mean fitness value in-
creased from the initial to the final generation. This

reveals that the proposed system captures, at some

extent, the subjective aesthetics of the user. As indi-

cated by the rf values in both variations, the depth
constraints for the genetic operation action imposed by

the RF, are expected to produce better results. This

improvement is also captured in Figure 6. Additionally,

Figure 7 depicts box plots of the accomplished relative

improvements in participants’ ratings, for the random
and the RF variations. To evaluate whether their differ-

ences are statistically significant, we apply a two-sided

Wilcoxon [24] rank sum test between their relative rat-

ings improvement. The null hypothesis in the test is
that the samples compared are independent samples

from identical continuous distributions with equal me-

dians. The null hypothesis is rejected at the 5% signifi-

cance level with a p-value equal to 0.0224, showing that

the differences are statistically significant.

Moreover, the mean number of generations increased

with the RF variation, which reveals that the effect of

fatigue is possibly reduced. In turn, this probably ex-

poses the user’s sense of control in the evolutionary pro-

cess. The standard deviation of the normalized ratings

in the final generation is decreased in relation to the ini-

tial generation in all cases except the RF–Tournament

version, which indicates that the fitness values of most
individuals in the final generation are expected to be

closer than the ones in the initial generation.
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Fig. 6 Relative improvement (rf ) between the initial and the
final generation for the random depth and the RF variations.
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Fig. 7 Box plot of the relative improvement of ratings with
the random and RF variation.

5.2 Risk Factor values and fitness rating behaviors

The participants in the RF variation had different al-

titudes with the use of the RF. Figure 8 exhibits the

RF values provided by each of the 9 participants who
used the RF variation, together with the normalized

mean fitness values of the generation evolved with the

respective RF. The mean fitness values were normalized
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Table 2 Results for the improvement of ratings between the initial and final generations for all three versions of the random
depth variation.

Random depth
Initial generation final generation

µGN minFI µFI σFI maxFI minFL µFL σFL maxFL rf
“Elitist” 5.5 0 0.431 0.269 0.778 0.222 0.611 0.272 1 0.419
Roulette 6 0 0.522 0.313 1 0.167 0.647 0.272 1 0.239

Tournament 9 0 0.333 0.319 0.875 0.125 0.510 0.157 0.7 0.5312

Table 3 Results for the improvement of ratings between the initial and final generations for all three versions of the RF
variation.

Fitness–Adaptive with Risk Factor
Initial generation final generation

µGN minFI µFI σFI maxFI minFL µFL σFL maxFL rf
“Elitist” 9 0 0.208 0.202 0.600 0.400 0.858 0.168 1 3.120
Roulette 12.33 0 0.392 0.291 0.800 0.400 0.725 0.196 1 0.851

Tournament 8 0 0.391 0.240 0.750 0.111 0.716 0.290 1 0.831

to maximum unit value for convenient visualization.
The ratings of the initial generation were omitted for

demonstrational purposes. A noticeable behavior about

the RF adjustment and the ratings that followed con-

cerns the users in the elitist selection version, and User

1 in the roulette version. These trials have also pro-
duced the highest relative improvements between ini-

tial generation and final generation. The users in these

trials have experimented with different RF values until

the final generations, where they gradually reduced the
RF. The RF reduction was accompanied by an increase

in the mean fitness value, which indicates that the fi-

nal few generations were continuously producing more

pleasant sound output.

The RF and rating altitude for the rest of the partic-

ipants exhibits that the impact of the RF in the evolu-

tion was imperceptible, probably making the evolution

more “random” than they expected. Nevertheless, the
RF adjustments by some users indicate that there was

a misconception about the role of the RF. For example,

User 2 in the roulette version did not apparently take

under any consideration the RF, since no adjustments
were made with the appearance of better or worse gen-

erations. An interesting remark has to do with the fact

that all the users of the elitist version had the same RF

adjustment attitude, which also led to a vast relative

improvement in the fitness ratings. On the other hand,
for the random depth variation and the elitist selection

method, the relative improvement was not so impres-

sive. Even though the number of participants is very

small, indications are provided that the combination of
the RF with an elitist selection scheme could lead to

more productive interactive evolution of the presented

melodies.

6 Conclusions

This paper presents an IE system which evolves melo-

dies using GP with fitness–adaptive genetic operators,

allowing the user to have some control over the random-
ness of evolution. Initially, experiments reveal a connec-

tion between the depth of the tree representation that

a genetic operator acts and the phenotypical distance

of the sounds produced by the presented system. These
experiments have led us to employ a randomness pa-

rameter called “Risk Factor” (RF), which is adjusted

by the user before the formulation of each generation.

Higher RF values are expected to drive the evolution

towards individuals that share greater differences from
their ancestors. Subjective tests have been conducted

and provided indications that the proposed approach

generally facilitates the user towards evolving melodies

that are more pleasing. In turn, the presented IE sys-
tem with the use of the RF is expected to introduce

a more productive and less fatiguing experience to the

user.

Although the subjective tests were performed on a

rather small sample of participants, there are statisti-

cally significant differences between the rating improve-
ments in the classical GP and the proposed RF varia-

tion. Thus, the results are indicative about the improve-

ment of the system with the use of the RF. Further-

more, indications are provided that an elitist selection

scheme may be more proper for the presented system,
when combined with the control of evolution random-

ness proposed in this paper. This may result from the

fact that the user employs the amount of uncertainty

that she/he wishes only to the best rated individuals.
Thus the evolution is accelerated, reducing user fatigue

and improving the overall experience. The random “in-

trusion” of a poorly rated individual, a fact that is pos-
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Fig. 8 RF values and mean ratings per generation (µfit) for each participant in the RF variation. The initial ratings are
omitted for demonstrational purposes.

sible with roulette and tournament selection, may have

a negative impact on the sense of control that the user

acquires with the RF.

As a future work, we initially intent to create a web

platform for all variations and versions of this IE system

in order to make it accessible to many participants. In
this way, the availability of results will increase and

we will be able to reach safer conclusions about the

appropriateness of the Risk Factor variation. Moreover,

the same methodology should also be tested on other IE

systems that use genetic programming to evolve music,
sound or any form of art. Controlling the randomness in

IE systems that create art might be of vital importance

for the potential output that this system may have.

Making such systems more user friendly may not only
boost the research towards human conception of sound

and art, but also disseminate computer–aided musical

composition to a wider spectrum of people.
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