Finding Multiple Global Optima Exploiting
Differential Evolution’s Niching Capability

Michael G. Epitropakis Vassilis P. Plagianakos Michael N. Vrahatis
Computational Intelligence Laboratory, Department of Computer Science Computational Intelligence Laboratory,
Department of Mathematics, and Biomedical Informatics, Department of Mathematics,
University of Patras, Greece. University of Central Greece, University of Patras, Greece.
Email: mikeagn@math.upatras.gr Greece. Email: vpp@ucg.gr Email: vrahatis@math.upatras.gr

Abstract—Handling multimodal functions is a very important ~maintain the diversity within their population and allow a
and challenging task in evolutionary computation communiy, parallel convergence into multiple solutions. Severahimig
since most of the real-world applications exhibit highly muti- techniques have been proposed and successfully applied to

modal landscapes. Motivated by the dynamics and the proxinty - . . .
characteristics of Differential Evolution’s mutation strategies different EAs, namely, crowding [2], [3], fitness sharind,[3

tending to distribute the individuals of the population to the [4], clearing [5], clustering [6], stretching and deflatir,
vicinity of the problem’s minima, we introduce two new Differ- [8], parallelization [9], restricted tournament selentifi0],
ential Evolution mutation strategies. The new mutation stategies [11], and speciation [12].

incorporate spatial information about the neighborhood of each In this paper, we study in particular the Differential Evolu

potential solution and exhibit a niching formation, without . . . .
incorporating any additional parameter. Experimental results tion (DE) algorithm proposed by Storn and Price [13]. This

on eight well known multimodal functions and comparisons Method has been applied in a plethora of optimization prob-
with some state-of-the-art algorithms indicate that the poposed lems with high success [13]-[16]. Without loss of geneyalit
mutation strategies are competitive and very promising, sice we only consider minimization problems. In this case, the
they are able to reliably locate and maintain many global opma  ophiactive is, given a multimodal function, to locate as many
throughout the evolution process. L . . .
global minimizers as possible. Several different DE vasgan
|. INTRODUCTION incorporate the aforementioned niching techniques aetit
Evolutionary Algorithms (EAs) are nature inspired stochaso handle multimodal problems. Thomsen extends DE with
tic search methods. They are based on the common condapth a crowding and a fitness sharing technique, namely
of evolving a population of candidate solutions by simulgti Crowding DE (CDE) and Sharing DE [17]. In the aforemen-
the main processes involved in the evolution of the genetioned work Thomsen showed that the CDE variant is a more
material of organism populations, such as natural selectipromising approach, since outperforms the Sharing DE in all
and biological evolution. EAs can be characterized as gloldasted problems [17]. Generally, the crowding techniqde [2
optimization algorithms and their population-based matuf3] changes the selection procedure and allows a competitio
provides them with the ability to avoid being trapped in aaloc for limited resources among similar individuals. The saritly
optimum; consequently a greater chance to find global optin individuals is calculated by a distance measure between
solutions exists. In many cases, EAs tend to converge tdheir genotypes, i.e. Euclidean distance. Specifically,téth-
single optimum solution, which drives the population tordlo  nique compares an offspring with randomly chosen indivisiua
lose its diversity through the evolution stages. Neveessl of the current population and if the offspring is fitter, raqs
most hard real-world problems are considered to be highlye most similar one. Crowding technique generally manstai
multimodal problems. They are likely to have several global better population diversity and therefore prevents pteraa
and/or local minima, and in many cases it is desirable tmnvergence to an optimum.
accurately locate as many as possible. Species-based DE (SDE) [18] incorporates the speciation
To this end, EAs have been extended through the conceptohcept to handle multimodal functions. SDE locates migltip
the niche formation. Niche formation is a common biologicalobal optima simultaneously through the adaptive fororati
phenomenon [1]. A niche can be characterized as a subspacefimultiple species. Each species is evolved by its own DE pro
the environment that can support different types of lifechdis cess, which tries to successively improve itself. The aigor
could aid the differentiation of the species and thus maintawill eventually be able to locate multiple global optima.-Al
their diversity, by imposing reproduction restrictionsaiy though SDE is computationally more efficient than the Crowd-
natural environments can lead to niche formation, for edemping DE, it incorporates a user-specified and problem depgnde
remote islands, high mountains and isolated valleys. Mapgrameter calledspecies radiuswhich should be properly
well-known EAs, characterized as Niching methods, have beehosen. Furthermore, DE using local selection (DELS) [19]
implemented to mimic the biological niche formation andegtakemploys a new mutation strategy that divides the mutation
advantage of its characteristics [1]. Niching methods tend operation into the local and the global mutation stagesh\&/it
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pre-specified probability, it selects a different mutatstrategy T
to perform either a global or a local mutation. The global e}
mutation helps the algorithm to explore the search space,s,
while the local mutation to efficiently search locally. DEh&s  © .1
been further hybridized with a multi-start gradient-bakeml o
search, as well as with the crowding technique [20]. In [9],
an “island model” approach is incorporated to locate many”‘ o ! e
global optima in parallel, while in [11] a DE extension withrig. 1. H-measure of six classic DE mutation strategies erSthifted Sphere
an ensemble of the restricted tournament selection (ERT®d on the Shifted Griewank

DE) has been proposed. Finally, several other evolutionary

computing methods have been proposed that attempt to deal

with multimodal fitness landscapes [8], [21]-[25]. set. Large values of the H-measure indicate the presence of a
Recent studies on the dynamics and the proximity capéustering structure in the dataset, while small valuegcate
bilities of the DE algorithm have shown that after a numbehe presence of regularly spaced points. A value ardufd
of steps the candidate solutions tend to gather around optidicates that the dataset contains randomly distribuéetiovs
mizers of the objective function [6], [16], [26]. Exploitn over the search space.
the aforementioned behavior may enhance the performance&hereby, to investigate the behavior of six well known
of several DE variants [16]. In this respect, here we into@duDE mutation strategies [16], we have selected two qualita-
two new mutation strategies that are able to efficiently kandively different functions; the Shifted Sphere and the ®uif
multimodal functions. The new mutation strategies incoap® Griewank function. The former is a simple unimodal, while
information regarding the neighborhood of each potentigie latter is a highly multimodal function. Figure 1, illustes
solution, which aids them to accurately locate and maimean values of the H-measure calculated at each generation
tain many global optimizers, without the need of additiondabr the six DE mutation strategies. The mean values have
parameters. The proposed mutation strategies are evéluai€en obtained from 100 independent simulations for the
on eight well-known and widely used multimodal problemso-dimensional versions of the Shifted Sphere and Shifted
and their performance is compared against some statesof-tGriewank functions. Error bars around the mean depict the
art algorithms. Simulation results suggest that the pregosstandard deviation of the H-measure. All mutation str@egi
strategies are very promising and exhibit competitive bigha exhibit large H-measure values within the first 100 genersti
The rest of the paper is structured as follows: Section ilidicating a strong clustering structure. Notice that DSt
briefly describes the behavior of different mutation opaist is the most exploitative strategy, while the least exptiés
motivating us to introduce the proposed mutation stratedle seem to be DE/rand/1 and DE/rand/2.
brief description of the Differential Evolution algorithadong Inspired by these findings, we introduce two new mutation
with the new mutation strategies are presented in Section Btrategies that incorporate population’s neighborhoéatina-
Next, the outcomes of an extensive experimental analysis §bn and are able to efficiently locate and maintain multiple

presented in Section IV and finally the paper concludes global optima of a multimodal function.
Section V with a discussion and some pointers for future work

DE/best/1 DE/best/t ——
in 1 DEfrand/1 ——
DEcurrent-to-be:
DE/be:

rand!
DEfcurrent-to-best/t —=— b1
DE/besti2 —=— st2 —a—

H-measure

DEfrand/2 —=—
V2 ——

ran
DE/current-to-best/2 —=— DE:current-to-bes

IIl. DIFFERENTIAL EVOLUTION MUTATION STRATEGIES
II. MOTIVATION FOR HANDLING MULTIMODAL FUNCTIONS

In recent works, the impact of the dynamics of different The DE algorithm [13] is a stochastic parallel direct search
DE mutation strategies on the population of individuals hamethod, which utilizes concepts borrowed from the broad
been investigated [6], [16], [26]. Experimental simulaso class of Evolutionary Algorithms (EAs). More specifically,
indicate that DE mutation strategies tend to distribute th2E is a population—based stochastic algorithm that exploit
individuals of the population in the vicinity of the minimd o a population of NP potential solutionsindividuals to effec-
the objective function. Exploitative strategies rapidatiier all tively probe the search space. Firstly, DE randomly iriited
the individuals to the basin of attraction of a single minimu the population in theD—dimensional optimization domain by
while explorative strategies tend to spread the individualtilizing a uniform probability distribution. Individualevolve
around many minima. over successive iterations to explore the search space and

In [16], we showed that by exploiting the characteristics dbcate the minima of the objective function. Throughout the
the aforementioned tendency and incorporating them irgo tavolution process, the user—defined population si¥®, is
structure of the DE its performance is enhanced. To quantfixed. At each iteration, callegeneration new vectors are
the aforementioned tendency and to properly study the behderived by the combination of randomly chosen vectors from
ior of different DE mutation strategies we have incorpatlae the current population. This operation in our context can be
clustering tendencgtatistic, namely the H-measure [16], [27]referred to asnutation while the outcoming vectors asutant
Clustering tendency is a well known concept in the clusténdividuals Several mutation strategies have been proposed in
analysis literature that deals with the problem of detemgin the DE literature, The most common and widely used can be
the presence or absence of a clustering structure in a datand in [13]—-[16]. To continue, each mutant individualheh



mixed with another, predetermined, vector — theget vector IV. EXPERIMENTAL RESULTS
— through an operation calledecombinationor crossover
This operation yields the so—calladal vector. The most In this section, we perform an experimental evaluation ef th
well known and widely used variants of DE utilize twoProposed approaches and compare their performance with sev
main crossover schemes; thgponentialand thebinomialor ~ €ral algorithms that can handle multimodal problems. Tafyer
uniform crossovef13]-[15]. Finally, the trial vector undergoesthe effectiveness of the proposed approaches we employ eigh
the selectionoperator, according to which it is accepted as Well known and widely used multimodal benchmark functions
member of the population of the next generation only if fiaving different characteristics, such as multiple eveartyl
yields a reduction in the value of the objective functign unevenly spaced global optima, multiple global optima ie th
relative to that of the target vector. Otherwise, targetaeis Presence of multiple local optima and deceptiveness [20].
retained in the next generation. The search operatorsegffigi Table | shows the benchmark functions and some of their
shuffle information among the individuals, enabling thersiea characteristics. More specifically, functiod§ and F> have
for an optimum to focus on the most promising regions of th Iow number of irregularly spaced global minima and no
solution space. A more comprehensive description of the B¢cal minima. Function/; has 18 global minima and a high
can be found in [13]-[16]. number (742) of local minima, with the global minima situhte

In this work, we take advantage from the dynamicie? two groups of nine regularly spaced minima in a three times
and the clustering tendency of the classic DE/rand/1 aHee square shape. FunctiBphas6” global minima without
DE/rand/2 mutation strategies, and incorporate into tmeir l0cal minima and is partially irregular, resembling a Bezie
tation schemes local information from the current popatati Stretched function of the cosine family, with the differeac
To efficiently locate and maintain global optima, we evolvBetween minima to increase along the valueyoffunction
each individual by applying as a base vector its nearedt containss” evenly spaced global minima and does not
neighbor individual, in an attempt to maintain the indivadito have any local minima. Similarly, functiof; has the same
the vicinity of an optimum and simultaneously to effect-wemumber of minima, but the distances between each global
explore the search space by incorporating random vectts iftinimum decrease towards the origin. Finally, functiti
the differences of the mutation scheme. More specifically, the modified version of the well-known Rastrigin function
for each individuala:fy, i = 1,2,...,NP, whereg denotes aving 4 evenly spaced global minima and 96 local minima.
the current generation, the mutant individugl,, can be  To demonstrate the efficiency of the proposed approaches,
generated according to one of the following new propos#&é compare them with five methods, i.e. the two classic

equations: DE/rand/1/bin and DE/rand/2/bin algorithms and three meth
1) “DE/nrand/1” ods that have been designed to handle multimodal problems,
) namely the FERPSO [22], the Crowding DE [17], and the
”f;+1 = xf]VNi 4 F(a:j;l — I?), (1) DELS [19]. Throughout this section, all the reported resale
' ' ‘ ‘ averaged over 100 independent simulations. For each simula
2) “DE/nrand/2” tion and each method we have initialized the populationsgusi

a uniform random number distribution with the same random
seeds. Furthermore, all methods have been implemented with
pe default parameters settings as have been proposed in the
iterature. Regarding the DE control parameters, the commo

mutually different and not equal to the running index Setting of ' = 0.5 and CE = 0.9 were used for all DE
and F > 0 is a real parameter, callesutation or scaling variants [14], .[15]. Regarding the FERPSO parameters, the
factor. The mutation factotF, controls the amplification of proposed setting Ofrmax = 4.1 and y = 0.729 has been
the difference between two individuals, and is used to MVéJt'I'Zed [22]. The population size has been kept fixed to
the risk of stagnation of the search process. The compagtio’™? = 100 |nd|v5|duals_and for each simulation, a budget of
complexity of the proposed mutation strategies is deteechin®@xV/Es = 10° function evaluations has been employed.

by the computational burden of the nearest neighbor compu-T0 Verify the effectiveness and the ability of the proposed
tations. In the worst case the proposed strategies exhibi@@Proaches to accurately locate the global minima, we first
similar complexity with the Crowding DE method [17]. TheSPeCify alevel of accuracye < (0,1]. The level of accu-
main goal of this work is to study if the incorporation off@cy depicts the tolerance level of a computed solution to
the nearest neighbor concept in the mutation operator czf'sidered as a global optimum. Specifically, if the Eudlide
produce a “niching effect” without employing any additid)naFj'Stance of a computed sql_utlon to a known global optimum
parameter. Thus, in a future work, we intend to further stud§ !€SS than the pre-specified level of accuracythen we

its complexity and efficiently determined the nearest nieigh c_on5|d_er the solution to be a global_opumum. Furthermore,
by utilizing properly computational geometry methods [28f/NCe IN the current benchmark functions the number and the

Finally, the rest of the DE steps remain the same as the cladgration of optima to be found is knowa priori, we can
DE/rand/1/bin scheme [13], i.e. we employ the binomid|S€ it as a performance metric. Thus, based on the aforemen-

crossover operator and the simple elitist selection operat tioned metric, to compare the performance of the impleneente

v;H = :véVNT‘ + Fryt —x?) + Fag® — '), (2)
wherezVi is the nearest neighbor of the current individuﬂt

x;, r1,72,73,74 € {1,2,..., NP} \ {i} are random integers



TABLE |
EIGHT MULTIMODAL BENCHMARK FUNCTIONS [20]

Function Mathematical formula Optimization box D | #global | # local
minima | minima
2
Branin| F1(7) = (y2 - 24yl + 2y — 6) +10 (1 — &) cos(y1) + 10| y1 € [-5,10],y2 € [0,15] | 2 3 -
Himmelblau| F2(§) = (y? +y2 — 11)% + (y1 + y32 — 7)? 7 € [—6,6]2 2 4 -
Shuber] F3(§) = S2°_, i cos((i + L)y1 +4) - 320 i cos((i + 1)y + i) 7 € [-10,10]? 2 18 742
4
Six-hump camel back Fy(7) = (4 — 2.1y + & ) y3 + y1ya + (—4 — 493)y3 y1 € [-1.9,1.9], 2 2 4
y2 € [-1.1,1.1]
vincent| Fs(7) = — 4 S22 sin(10 - log(y)) 7 € [0.25,10]P 2 6P -
Deb 1| Fs(7) = —% Y12, sin(5my;) geo,1P 2 50 -
3
Deb 3| Fr(7) = —%5 32 sin®(5m(y," — 0.05) 7elo,1)P 2 5D -
Modified Rastrigin Fs(§) = 20+ 32 | (y? + 10 cos(27y;)) 7 € [-5.12,5.12)2 2 4 96
TABLE 1l
SUCCESSRATIO AND PEAK RATIO MEASURES FOR THE MULTIMODAL FUNCTIONSE} —Fy
Function FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.103| 0.00 0.333| 0.00 0.570| 1.00 1.000| 1.00 1.000 | 1.00 1.000 1.00 1.000
1.0e-04 0.00 0.113| 0.00 0.333| 0.00 0.577| 1.00 1.000 | 0.99 0.997 | 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.107| 0.00 0.333| 0.00 0.547| 1.00 1.000 | 0.99 0.997 | 1.00 1.000 | 1.00 1.000
1.0e-06 0.00 0.113| 0.00 0.333| 0.00 0.587| 1.00 1.000| 1.00 1.000 | 0.91 0.970 1.00 1.000
1.0e-07 0.00 0.150| 0.00 0.333| 0.00 0.563| 1.00 1.000 | 1.00 1.000 | 0.12 0.493 | 1.00 1.000
1.0e-08 0.00 0.100| 0.00 0.333| 0.00 0.570( 1.00 1.000 | 1.00 1.000 | 0.00 0.067 | 1.00 1.000
1.0e-09 0.00 0.133| 0.00 0.333| 0.00 0.570| 1.00 1.000| 0.99 0.997 | 0.00 0.010 1.00 1.000
Function F» FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.333| 0.00 0.250| 0.00 0.250( 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-04 0.00 0.333| 0.00 0.250| 0.00 0.250| 1.00 1.000| 1.00 1.000 | 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.347| 0.00 0.250| 0.00 0.250( 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-06 0.00 0.320| 0.00 0.250| 0.00 0.250| 1.00 1.000| 1.00 1.000 | 1.00 1.000 1.00 1.000
1.0e-07 0.01 0.317| 0.00 0.250| 0.00 0.250| 1.00 1.000| 1.00 1.000 | 0.96 0.990 1.00 1.000
1.0e-08 0.00 0.292| 0.00 0.250| 0.00 0.250( 1.00 1.000 | 1.00 1.000 | 0.11 0.522 | 1.00 1.000
1.0e-09 0.00 0.335| 0.00 0.250| 0.00 0.250| 1.00 1.000| 1.00 1.000 | 0.00 0.083 1.00 1.000
Function F3 FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.465| 0.00 0.118| 0.47 0.918| 0.01 0.743 | 0.92 0.996 | 0.00 0.047 | 0.00 0.674
1.0e-04 0.00 0.437| 0.00 0.112| 0.450.872| 0.01 0.717| 0.89 0.994 | 0.00 0.003 0.00 0.148
1.0e-05 0.00 0.419| 0.00 0.112| 0.53 0.923| 0.00 0.736 | 0.95 0.997 | 0.00 0.000 | 0.00 0.015
1.0e-06 0.00 0.411| 0.00 0.118| 0.51 0.858| 0.01 0.727 | 0.97 0.998 | 0.00 0.000 | 0.00 0.003
1.0e-07 0.00 0.375| 0.00 0.114| 0.49 0.902| 0.00 0.748 | 0.97 0.998 | 0.00 0.000 0.00 0.000
1.0e-08 0.00 0.356| 0.00 0.106| 0.42 0.854| 0.01 0.729 | 0.92 0.996 | 0.00 0.000 | 0.00 0.000
1.0e-09 0.00 0.322| 0.00 0.114| 0.44 0.873| 0.02 0.751| 0.91 0.995| 0.00 0.000 0.00 0.000
Function Fy FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele | SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.01 0.095| 0.00 0.500| 0.89 0.945| 1.00 1.000 | 1.00 1.000 | 1.00 1.000 | 1.00 1.000
1.0e-04 0.00 0.020| 0.00 0.500| 0.91 0.955| 1.00 1.000| 1.00 1.000 | 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.005| 0.00 0.500| 0.90 0.950( 1.00 1.000| 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-06 0.00 0.005| 0.00 0.500| 0.89 0.945( 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-07 0.00 0.000| 0.00 0.500| 0.91 0.955| 1.00 1.000| 1.00 1.000 | 1.00 1.000 1.00 1.000
1.0e-08 0.00 0.005| 0.00 0.500| 0.94 0.970( 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-09 0.00 0.005| 0.00 0.500| 0.89 0.945| 1.00 1.000 | 1.00 1.000 | 1.00 1.000 | 1.00 1.000

algorithms, we adopt the following two measures: fi@ak optima have been successfully located.

ratio and thesuccess ratg17]. Strictly speaking, for a pre-  Tne first task that we want to tackle is to find out if the
specified budget of function evaluations{xNFEs) and an jmplemented methods can accurately locate the global nainim
accuracy level, thepeak ratio(PR) measures the percentagg, different levels of accuracy. Thereby, Table II, Tableds

of global optima (i.e. peaks) located over the total numbgje|| as Figure 2 exhibit extensive experimental results Ibf a
of known global optima. Thus, for one simulation theak aigorithms over all benchmark functions considered in this

; : . number of peaks found . .
ratio can be defined as: PR Tmperoricarpears |t Should be  work. We evaluate the algorithms for seven different actyira

noticed that the PR reported values are average values 00er fyels, namely= € {10-3,10~%,...,10~°}. This is a very

independent simulations. Additionally, theeiccess ratgSR) - challenging task, since when the accuracy level decrefses t
measures the percentage of simulations in whadhglobal 5ccuracy of the computed global minima increases. As it is



TABLE Il
SUCCESSRATIO AND PEAK RATIO MEASURES FOR THE MULTIMODAL FUNCTIONSE5—F3y

Function F5 FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.161| 0.00 0.028| 0.00 0.028| 0.00 0.401 | 0.00 0.391 | 0.00 0.718 0.00 0.493
1.0e-04 0.00 0.155| 0.00 0.028| 0.00 0.028| 0.00 0.400 | 0.00 0.389 | 0.00 0.707 0.00 0.486
1.0e-05 0.00 0.136| 0.00 0.028| 0.00 0.028| 0.00 0.394 | 0.00 0.374 | 0.00 0.621 0.00 0.474
1.0e-06 0.00 0.131| 0.00 0.028| 0.00 0.028| 0.00 0.371 | 0.00 0.351 | 0.00 0.342 | 0.000.437
1.0e-07 0.00 0.121| 0.00 0.028| 0.00 0.028| 0.00 0.367 | 0.00 0.294 | 0.00 0.127 | 0.000.402
1.0e-08 0.00 0.107| 0.00 0.028| 0.00 0.028| 0.00 0.362 | 0.00 0.213| 0.00 0.016 | 0.00 0.350
1.0e-09 0.00 0.097| 0.00 0.028| 0.00 0.028| 0.00 0.339 | 0.00 0.100 | 0.00 0.003 | 0.00 0.268
Function Fg FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.396| 0.08 0.886| 0.14 0.921| 0.68 0.985| 0.62 0.983 | 1.00 1.000 | 0.61 0.982
1.0e-04 0.00 0.389| 0.04 0.885| 0.14 0.917| 0.67 0.984 | 0.62 0.981| 1.00 1.000 | 0.61 0.980
1.0e-05 0.00 0.352| 0.09 0.868| 0.11 0.919| 0.59 0.978 | 0.68 0.986 | 1.00 1.000 | 0.40 0.967
1.0e-06 0.00 0.313| 0.11 0.870| 0.16 0.923| 0.54 0.976 | 0.64 0.983 | 1.00 1.000 | 0.01 0.602
1.0e-07 0.00 0.301| 0.09 0.888| 0.19 0.934| 0.57 0.978 | 0.63 0.983 | 1.00 1.000 | 0.00 0.122
1.0e-08 0.00 0.270| 0.07 0.878| 0.18 0.930| 0.69 0.985| 0.64 0.982 | 1.00 1.000 | 0.00 0.016
1.0e-09 0.00 0.242| 0.12 0.890| 0.13 0.923| 0.66 0.984 | 0.62 0.982 | 0.99 1.000 | 0.00 0.000
Function F; FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.00 0.333| 0.00 0.040| 0.00 0.200| 0.00 0.816 | 0.02 0.868 | 1.00 1.000 | 0.29 0.958
1.0e-04 0.00 0.305| 0.00 0.040| 0.00 0.212| 0.00 0.796 | 0.01 0.831| 0.99 1.000 | 0.20 0.952
1.0e-05 0.00 0.277| 0.00 0.040| 0.00 0.211| 0.00 0.779 | 0.00 0.614 | 0.09 0.864 0.030.881
1.0e-06 0.00 0.254| 0.00 0.040| 0.00 0.200| 0.00 0.747 | 0.00 0.204 | 0.00 0.236 | 0.00 0.483
1.0e-07 0.00 0.224| 0.00 0.040| 0.00 0.177| 0.00 0.696 | 0.00 0.029 | 0.00 0.028 | 0.00 0.085
1.0e-08 0.00 0.197| 0.00 0.040| 0.00 0.199| 0.00 0.651 | 0.00 0.003 | 0.00 0.002 | 0.00 0.010
1.0e-09 0.00 0.162| 0.00 0.040| 0.00 0.182| 0.00 0.561 | 0.00 0.000 | 0.00 0.000 | 0.00 0.000
Function Fg FERPSO | DE/rand/1 | DE/rand/2 | DE/nrand/1| DE/nrand/2 | Crowding DE DELS
Accuracy levele| SR PR SR PR SR PR SR PR SR PR SR PR SR PR
1.0e-03 0.01 0.398| 0.12 0.447| 0.90 0.950| 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-04 0.01 0.357| 0.03 0.373| 0.90 0.950| 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-05 0.00 0.350| 0.12 0.440| 0.91 0.955| 1.00 1.000 | 1.00 1.000 | 1.00 1.000 | 1.00 1.000
1.0e-06 0.01 0.355| 0.11 0.438| 0.90 0.952| 1.00 1.000 | 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-07 0.01 0.355| 0.05 0.393| 0.94 0.970| 1.00 1.000 | 1.00 1.000 | 1.00 1.000 | 1.00 1.000
1.0e-08 0.00 0.363| 0.01 0.373| 0.94 0.970| 1.00 1.000| 1.00 1.000| 1.00 1.000 | 1.00 1.000
1.0e-09 0.01 0.343| 0.09 0.417| 0.86 0.935| 1.00 1.000 | 1.00 1.000 | 1.00 1.000 | 1.00 1.000

expected, both the SR and the PR vary with respect to differemd PR measures decrease with the level accuracy. A similar
levels of accuracy and, in general, the algorithms tend behavior can be observed for the DELS method, i.e. althaugh i
produce smaller values of both peak ratio and success rgtesforms very good in function®, , 5, Fy andFg, in the most

as the accuracy levels decrease. challenging functions with many global minima (e.g. funat

In more detail, FERPSO exhibits poor performance on thfg 15, Fs, and I%) its performance slowly decreases as the
accuracy level decrease.

benchmark set with the considered parameter settingsnlit ca
locate a low number of minima in almost all the considered Finally, both the proposed DE/nrand/1 and DE/nrand/2
functions, irrespective of the accuracy level. We speeulatlgorithms, exhibit good performance, in terms of SR and
that FERPSO needs a higher swarm size to accurately locB® measures, for the majority of the considered functions
all global minima on the given budget of function evaluafe.g. functionst, Fy, F3, Fy, Fg, F7, and Fg). Generally, they
tions. Although the classic mutation strategies DE/raraid exhibit either equal or better performance when compared
DE/rand/2 have not be designed to tackle multimodal funagainst the other utilized methods, especially when the ac-
tions, in many cases, they exhibit good SR and PR values (egracy level decreases (e.g. functidis Fs, F3, Fy, and Fg).
functions F3, Fy, Fs, and Fg). More specifically, DE/rand/1 More specifically, in most difficult problems (e.g. functsn
always finds one global minimum, but does not maintaifs, F5, Fs, and F;) DE/nrand/1 locates either all or a high
individuals on many global minima. On the other handjumber of global minima, irrespectively of the accuracyelev
DE/rand/2 exhibits a better “niching effect” on the popidat In the cases where the performance of Crowding DE and
resulting in good performance (e.g. functioR, Fy, Fs, and DELS is not good, DE/nrand/1 performs better in terms of PR
Fy). Crowding DE is one of the most promising approachesd SR, e.qg. irf3, and the high accuracy levels 6§ and F.
implemented in this work. It exhibits a very good performandE/nrand/2 performs similarly in most of the functions and
(e.g. functionsFy, Fg, and Fg), but when the accuracy levelin the challengingFs function exhibits the best performance
decreases it can not maintain the population on many gloliral comparison with all the other methods. Comparing the
minima (e.g. functiong’, — F3, F;, andF%). Thus, as depicted DE/nrand/1 with the DE/nrand/2 approach, the performance
in Tables Il and Ill, for the aforementioned functions, b&R of the first approach is most robust in functiofs and F;.
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Fig. 2. Number of distinct global minima found by the implerteel methods versus different levels of accuracy

. . - TABLE IV
DE/nrand/1 can maintain a high num_ber of global minima CONVERGENCE SPEEHACCURACY LEVEL £ = 10~4)
as the accuracy level decreases, while the performance of
DE/nrand/2 tends to slowly decrease. Based on the aforemen- ~ Function 7} Mean St.D. SR Mean PR
tioned observations we believe that both proposed appesach SE/RF’?ﬁ Hllﬁ l’\\‘l//ﬁ 8-88 83};3
e>§h!b|t a great potential for accurgtely Ioca_ltlng many glbb DE/rand/2 N/A N/A 000 0577
minima and thus successfully tackling multimodal funcéon DE/nrand/1  6982.00 989.37 1.00 1.000
DE/nrand/2  10920.20 1380.99 0.99  0.997
A. Convergence speed Crowding DE  40137.00 595148 1.00  1.000
In this section, we present experimental results for all DELS 13361.00 162548 1.00 1.000
utilized methods in terms of convergence speed. To measure _‘unctonfo  Mean StD. SR Mean PR
- FERPSO N/A N/A_ 0.00  0.333
the convergence speed of a methqd at a pre-specified !evel DE/rand/1 N/A N/A 000 0250
of accuracy, we calculate the required number of function DE/rand/2 N/A N/A 000  0.250
evaluations in which it can accurately locate all global imia DE/nrand/L ~ 13504.00 ' 1521.96 ~1.00 ~ 1.000
” DE/nrand/2  25400.00 2817.91 1.00  1.000
of the problem_at hand. More specifically, for_each _problem Crowding DE ~ 48691.00 4498.40 1.00 1.000
and each algorithm we have conducted 100 simulatiens ( DELS 22122.00 234502 1.00  1.000
1074, NP = 100, and maxNFE = 10°). Table IV exhibits Functionfy _ Mean StD. SR Mean PR
h ber of functi luati M its stahd FERPSO N/A N/A_ 0.00  0.020
the mean number of function evalua ions (Mean), its s ar DE/rand/1. N/A N/A 000 0500
deviation (St.D.), the SR measure and the mean value of the DE/rand/2 2979.12  426.48 0.91 0.955
PR measure over the,, F», F; and Fy functions. ng:gﬂgg 45}5)019080 91954342 o 1-2%0 1-2%%0
One can clearly observe that the algorithms DE/nrand/1and  cronding DE 1479300 339350 1.00  1.000
DE/nrand/2 exhibit better performance (lower mean values i DELS 6030.00 1205.33  1.00 1.000
terms of function evaluations), with the DE/nrand/1 to be Fl;’éc'ggggs '\;'ggg - St'?\i/A 3%1 MeggsF;R
the best performing algorlthm in all four cases considered DE/rand/1 640000  700.00 0.03 0373
here. On the other hand, in most of the cases FERPSO, DE/rand/2 8961.11 873.02 090  0.950

DE/rand/1 and DE/rand/2, did not succeed to reach 100% DE/nrand/L ~ 8222.00 910.72 1.00  1.000
success rate. DELS comes third in terms of mean number C?()Evlvr(‘jriﬁgdgE 11118357_'88 112523%.'33 11.'g8 11.'888
of function evaluations, closely following the performanaf DELS 14975.00 1328.43 1.00 1.000
the DE/nrand/2 algorithm. Crowding DE, in three out of four
functions (e.g. functiong’, F», and F};), requires the highest
number of function evaluations to locate all minima.
Additionally, in Figure 3, we illustrate the behavior of thebut they tend to locate the global minima slowly. On the
methods during the simulations. More specifically, we penfo other hand, in many cases FERPSO, DE/rand/1, DE/rand/2
100 independent simulations and for a given accuracy lewathough they exhibit a good niching effect and succeed to
(¢ = 107%), we record the number of global minima thdocate several minima, they can not maintain them until the
method can locate throughout the simulation. It is obvitkas,t end of the simulation. This behavior tends to be more visible
in most of the cases, the proposed DE/nrand/1 and DE/nrandfthe accuracy level decreases and can be captured by the
algorithms efficiently and accurately locate a high numb&R measure. In Tables Il and Ill, we observe that in the
of global minima and maintain them until the end of thenost challenging functions (e.g. functiohs, F;, andF;) the
simulation. DELS and Crowding DE exhibit similar behaviorproposed DE/nrand/1 approach locates and maintains many
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Fig. 3. Mean number of global minima found during 100 indefssm simulations of all methods ové# —Fy (¢ = 10~%)
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DE and DELS do not (DE/nrand/1 exhibits higher values of . Fcen T (g o reten s G gmamne
E e £
the PR measure). £l R g ea
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B. Population size effect §or % PR
In this section, we study the effect of the population siz& : 3 1}///}///}//
of all implemented methods on the functions having many :f L
global minima (e.g. function®s, Fy, Fs, and F;,). For several C o Vi %0 T T N
H . H H DE/rand/1 T DE:g:iﬂdg ,,E,, : DE/randa AT Bgz:iﬂgg ,,f,, PELS
different population sizes, we measure their performance b ez = coudnde = DErand2 - Crowding OE
calculating the number of global minima found at the accyrac_ ., Fncten’e @ oo e w Functenty o guma e

level ¢ = 10~* and within a budget ofnaxNFEs = 10°
function evaluations. Figure 4 illustrates the perforneaoné
the methods as the population size increases from 40 to 3
individuals. Generally, in each function there exist papioin ot ]
size values where most of the algorithms can locate a high s = = R I N w E
number of global minima. As expected, this behavior depends
on the structure of the problem at hand and the characteyisti  Fig. 4. Population size effect on th;, F5, F and F7 functions
of the applied method. In functiody, as the population
size increase, almost all algorithms can locate more global
minima. In functionsFs and F;, as the population increases
DE/nrand/1, DE/nrand/2, FERPSO, Crowding DE and DELg&oposed DE/nrand/1 and DE/nrand/2 algorithms exhildieeit
manage to locate an increased number of global minima. Néetter or equal performance in comparison with the other
ertheless, when the population size reaches 150-200 dhdivimethods. DE/nrand/1 exhibits a more robust performance as
als the performance of DE/nrand/2, Crowding DE and DELt%e population size increases and in functiafs and £
tends to rapidly decrease. Finally, in functiél, Crowding outperforms the other methods, when the population size is
DE and DELS can locate many minima with populatiofrom 250 or 300 individuals. DE/rand/2 can accurately lecat
sizes ranging from 40 to 50 individuals. When the populationany global minima, but when the population increases its
size increases their performance decrease rapidly, widie t performance tends to decrease. Crowding DE exhibited the
performance becomes marginal when the population sizebigst performance i and Fs functions. Crowding DE and
larger than 100 individuals. On the contrary, DE/nrand/BELS exhibited good performance in some of the considered
DE/nrand/1 and DE/rand/2 produce the best performance wheat functions (e.g. functions; and £), but when the popula-
the population size is between 100 and 150 individuals, aftidn size increases the performance of both methods dexreas
then as the population increases their performance dexseaddditionally, in the F5 function, they exhibited a marginal
Finally, DE/rand/1 and FERPSO exhibit a stable increasingerformance for the majority of the population size values.
performance as the population size increases, but in genéf@RPSO did not succeed to locate many global optima in
their performance is worse than that of the other methods.the four functions considered in this section, but as diseds
The most promising approaches in all considered functioims[22] FERPSO may be capable of finding more global optima
are DE/nrand/1, DE/nrand/2, Crowding DE and DELS. Thehen a larger population size is employed. Thus, as one can
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observe it exhibits its best results when the populatioa &z
equal to 300 individuals.

Finally, DE/rand/1 in general, locates a small number of
global optima, but it is interesting to observe that in fioies  [7]
F3 and Fg as the population increases the algorithm exhibits
good niching performance. DE/rand/2 exhibits a betteringh (g
effect than DE/rand/1, while as the population size ina@sas
DE/rand/2 is capable to compute an increased number ?gf]

[10]

global minima.

It has been recognized that throughout the evolutionary
process of the Differential Evolution (DE) algorithm a c—lus[11]
tering structure of the population of individuals can arike
this study, we take advantage of the aforementioned behavio
and attempt to improve DE’s ability to accurately locate al
maintain many global optima. To this end, we introduce two
new mutation strategies that are based to the classic Di#trari13]
and DE/rand/2 strategies and incorporate into their sceeme
spatial information of the population. To evolve an indivéd, [14]
we apply as a base vector its nearest neighbor. Thus, the
individuals effectively explore their neighborhoods. [15]

Experimental results on eight well known multimodal func-
tions with different characteristics and comparisons @gfai

. . ) 16]
two classic DE mutation strategies as well as three sta{e-
of-the-art algorithms, demonstrate that the proposed tioata
strategies are competitive and very promising. Speciﬁpalhn
they can accurately locate many global optima and main-
tain them though the evolution process. In the four most
challenging functions, they exhibit high peak ratio valued®l
and in most cases outperform the other algorithms. In terms
of convergence speed, they can accurately locate all global
minima in less function evaluations than the other algargh
Finally, experiments regarding the effect of the populatze
show that, in most of the cases, the behavior of the proposged
algorithms is robust.

In a future work, we will extensively study their perfor-
mance and complexity on more multimodal function familie$21]
with higher dimensions and different characteristics.
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